
TRACKING FLIGHT SOFTWARE IN CASSINI MISSION
OPERATIONS - USING THE FMT TOOL

Edwin P. Kctn crnd Hal Ufelman

Jet Propulsion Lnborutory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, Ca. 91 109, USA

(edwin.p.kun@jpl.ncrsa.gov; hal.uffelman@jpl.nasa.gov)

ABSTRACT

The arduous task of tracking multiple flight software images, across redundant on-
board processors / recorders and across time, has been automated and systematized via
the use of a unified Flight Software Memory Tracker (FMT) Tool. FMT was
developed as part of JPL's Multimission Spacecraft Analysis System, and was
customized for the Cassini spacecraft mission. Cassini is designed for eleven years of
space flight, over which flight software is expected to be have multiple updates,
including several major version revisions. The overall design and operational
procedures of FMT are described in this paper.

Keywords: Flight software memory tracking; Cassini spacecraft; Ground analysis
software; Mission operations

1. INTRODUCTION

Tracking spacecraft on-board flight software (FSW) images is a vital activity in ground systems and
mission operations. This is particularly true for one-of-a-kind spacecraft built for long duration
planetary exploration, during which FSW requires frequent maintenance, patches, parameter changes,
and occasional complete new version loads. Complete and accurate knowledge of current and past
FSW images is essential.

In the history of spacecraft operations at the Jet Propulsion Laboratory (JPL), ground mission
operations analysts utilize various degrees of automation, integration of software tools and manual
procedures to track FSW. While dynamic memory addresses can only be tracked by full-up hardware
and software simulation, static memory addresses, constants, and certain quasi-static parameter
addresses are always tracked. For address spaces of interest, an up-to-date FSW image, a FSW image
at a specific time in history, and a trend of certain parameters over time, are often the basis for
analysis, diagnosis and prognosis.

To automate and systematize such FSW memory tracking, the Flight Software Memory Tracker
(FMT) was developed as a unified tool for multimission operations. FMT was customized for the
eleven-year (primary) Cassini mission, launched on October 15, 1997 and scheduled to arrive at
Saturn in 2004 for a four-year orbital tour of the planet.

FMT is routinely used by Cassini mission operations to track FSW code and parameter address spaces
of interest for the AACS (Attitude and Articulation Control Subsystem) and the CDS (Command and
Data System). Multiple ground FMT images are maintained. These images are living images which
are updated per activity commanded or sequenced on-board the spacecraft.

FMT was developed as part of the Multimission Spacecraft Analysis System (MSAS), under the
auspices of the Jet Propulsion Laboratory Multimission Ground Systems Office (Ref. I , 2).

I

2. CASSINI’S REQUIREMENTS FOR FMT

AACS and CDS, the two major subsystems on the Cassini spacecraft, both have extensive computing
facilities. The FSW of each subsystem must be tracked. Both AACS and CDS are equipped with
dual-redundant MIL-STD- I750A computers, each with 5 12K memory, usually containing FSW of
the same version / update as the redundant counterpart, and occasionally containing different FSW
versions (during code patches, revisions, and during fault situations). The ten scientific instruments
on-board Cassini also have various sizes of embedded FSW.

There are also two redundant solid state recorders (SSR), each with a capacity of 2 gigabits. Multiple
(4) copies of AACS and CDS FSW memory load images are resident on each SSR. Spacecraft
commands affect SSR memory load images and RAM FSW images differently. Parameter tables on
RAM images may not be resident on SSR images; nonetheless, there is a determinate relationship
between SSR and RAM images. SSR images may be differ from one another during flight because
of radiation induced bit flips, hardware or software faults, or during FSW revisions; the differences
must be tracked and reconciled.

Counting all FSW images, AACS tallies 10 copies (there are another two additional copies on
extended memory). CDS tallies 10 copies. The SSR copies are formatted essentially like the
compiled load images, with additional checksums appended to the data records. The actual RAM
images are 5 12K-word images, basically address-value pairs.

Normal spacecraft operations involve: ground uplinks of commands; on-board execution of real-time
commands and stored sequences (of commands); and downlink of telemetry. Through this closed
loop interaction, FSW code and parameter tables can be updated via uplink commands and verified
via memory readout (MRO) telemetry.

Knowing the contents of a single 512K-word image is fairly straight-forward. However, when
updates as frequent as once per week, tracking the same image over time can be an arduous task.
Over an 1 I-year mission, retrieving the time history of parameters and memory contents can become
intractable, and requires efficient storage of the multiple 512K images. The challenge of tracking
Cassini’s multiple FSW copies over redundant computers and SSR’s becomes overwhelming without
a unified tool such as the FMT.

Functional requirements and software requirements for a FMT for Cassini mission operations are
detailed in Ref. 3 and 4. Figure 1 shows the context diagram of FMT. The following summarizes
FMT functionality:

Keep current on-ground replicas of on-board FSW images, in code and parameter tables;
Track all determinable changes due to execution of uplinked or stored commands;
Process MRO telemetry data, compare with on-ground copies, and reconcile differences;
Relate RAM and SSR images;
Analyze, relate, and reconstruct FSW code and parameters for time profiles or snapshots;
Facilitate uplink commands to recreate known FSW images via memory patches.

The determination of changes due to execution of uplinked or stored commands is implemented
outside FMT. The parsing and interpretation of spacecraft commands are performed within the
framework of a JPL program set called SEQGEN (Ref. S), which has been the subject of many
technical papers. The adaptation of SEQGEN to FMT command parsing is via the use of custom
interface and model files.

3. OVERVIEW OF FMT DESIGN

Figure I is the FMT context diagram. Figure 2 is the FMT (Level I) Data Flow Diagram

FMT meets the challenge of handling, updating, archiving and analyzing large amounts of data
through a novel, yet intultive, data and file structure design. FMT is implemented as a program set,
consisting o f multiple “ u t i l i t y ” programs, some of which are programs that also call other FMT

2

utilities. FMT users are best served by executing scripts, such as UNIX scripts, to achieve the higher-
level objectives of FMT.

3. I Data and File Structure

Figure 2 is the FMT (Level I) Data Flow Diagram. The variety types of data handled by FMT are
evident in this figure. Representation of the different data types and data structures is unified, using a
common header, data group, and data record structure. Classes of data groups and data records are
created, lending itself to the use of property inheritance features of an object oriented programming
language such as Java, in which FMT is implemented.

While FMT’s software design in Java is detailed in Ref. 6, the classes of data types (hence their
corresponding Java classes) are listed here:

.alv .ealv .xalv (SSR “Assisted-Load-File” data classes)

.fmt .efmt .xfmt (RAM FMT data classes)

.amf .eamf (Attribute-Model-File classes)

.adb .eadb (Attribute-Data-Base classes)

.msk .emsk (Data Mask classes)

The utility of, hence class extension and property inheritance between, these data structures can be
easily exemplified by the following:

At the time of a load, the RAM .fmt file contains the data records pertaining to the load, i.e., one data
group. Each group has a data group header comprised of time (SCET), image type (RAM I SSR I
etc.), and $$EOG (an indicator for “end-of-group“). Each data record is structured to show RAM
start-address, data values of up to sixteen RAM addresses, and a new line character. The .fmt file has
a file header record and $$EOF (an indicator for “end-of-file”).

When an update occurs, the update is incorporated in the .fmt file with a new time-stamped data
group appended to the previous data group(s). When data groups are appended, the .fmt file takes
the nomenclature of .efmt (“enhanced” - fmt) file.

For certain update operations, update files with multiple data groups are generated by FMT utilities.
Due to the “spatial” nature of FMT, the update groups need to be correlated with specific “spatial”
images, e.g. AACS-A computer vs. AACS-B computer. Hence, the nomenclature of a .xfmt
(“extended fmt) file, where the data group header takes an extra descriptor (a Software image
Dezgnator, SID), e.g., SCET; RAM; AACS-A. The following examples show the skeleton of a .xfmt
file:

DATA-FILE-HEADER
1 9 9 7 - 0 7 0 T 0 0 : 0 0 : 0 0 . 0 0 0 ; RAM; AACS-A
0 0 0 6 7 0 e 5 1 1 e 5 2 2 7 4 0 a 8 a O f 0 0 0 0 7 b 0 4 8 a 0 0 1 d f 5 . . . l d f 2 8 5 f f 0 0 0 3 7 f f 0 7 e f 0
0 0 0 6 8 0 2 3 e 8 7 f f 0 7 e f 0 2 3 8 4 7 f f 0 7 e f 0 2 3 0 9 7 f f 0 . . . 7 e f 0 2 4 a 8 7 f f 0 7 e f 0 2 4 a f
$ $ EOG
1 9 9 7 - 2 9 8 T 1 2 : 0 0 : 0 1 . 0 0 1 ; RAM; AACS-A, AACS-B
0 3 8 e 8 0 4 1 8 9 3 7 f 7
0 3 9 3 6 6 7 d c e O O O d 0 0 0 0
$ $ EOG
$$$EOF

All twelve file types (each with unique extension ‘xxx’) defined above have identical data header,
data group, .xxx and .exxx file structure. Data record structures for different data types are different.
A RAM fmt data record has been shown as a 17-element record, consisting of an address followed by
sixteen 4-nibble hex values. As another example, an .adb data record takes the following form (i n
single line):

Note that all these files are ASCII text files, which can be imported and exported to popular COTS
(commercial off-the-shelf) personal computer editor and application programs, making it relatively
painless to perform front-end and tail-end processing. FMT is written in Java, which means that its
bytecodes are independent of, and hence executable on multiple end-user computing platforms.

3.2 FMT Program Set

The current FMT design
fmtbeheadeadb
fmtcs 16
fmtextractdes
fmtmaskxfm
fmtquery
fmtuser

has 23 programs, or “utilities”, listed as follows:
fmtcmdstemgen fmtconvert fmtcreate
fmtdiff fmtdv2eu fmteu2dv
fmtfilteralv fmtmaskalv fmtmasktdc
fmtmemupdatecmdgen fmtmerge fmtmro
fmtrefresheadb fmtreinit fmtsort
fmtupdatebycommand fmtxemerge

These “utilities“ are normally executed in scripts, i.e., “procedures”, in order to achieve an overall high
level objective of FMT.

Extracted from the User’s Guide (Ref. 7), the following UNIX scripts (among other scripts) are now
in operation:
Image Initialization: configured-directory-build.script amf-build.script

adb-build.script ssr-ram-image-build.script
basic-ssr-ram-image-build.script

Image Differencing ram2ram-diff.script ssr2ssr-diff.script
ram2ssr-diffscript ssr2ram-diff.script

File Version Update eamf-version-updatescript amf-update.script
Update SSR update-ssr-from-ram.script extract-data-recors.script

CDS Checksum cds-fletcher-calcu1ation.script cds-checksum-range-extract.script

Map File Processing awk-mapscript

ram-alf-diff-gen.script

fletcher.script

4. EXPOSITION OF UTILITIES AND PROCEDURES

This section offers detailed insight into the fmtconvert and fmtdiff utilities and the
ramkr-diff.script, to illustrate how FMT utilities and procedures work. Such application of utilities
and procedures follows the footsteps of Mars Observer and Galileo mission operations (Ref. 8 and 9).

4. I fmtconvert Utility

This ut i l i ty embodies the data manipulation of FMT, where certain data types are converted to other
data types, and where certain files are manipulated and “evaluated”. fmtconvert functions more than
mere data format conversion. Its usage is as follows:

For single input file <parameter> options, they are:
fmtconvert <parameters>

[-if1 <input file-] name]
[-itype 1 { adbleadblealvleatnflefmtlemsklfmtlldmlmrolxalvlxfmtlalvlamf] 1
similarly for -if2 and -itype:!
[-of <output file name>]
[-otype (adblamflalvleadhlealvlefmtlemsklfmtlmskltdclxalvldf~ntlprg}]
[-scet <scet-time>]
[-sid <software image designators, e.g. AACS-A, CDS-B>I

FMT f o r Cussitri Mission Ops Paper #Sf005 - SpuceOps 5th Int. Sytnp., Tokyo, 6/1-5/97

Example I : fmtconvert -if SSRA-O-AACS.alv -of AACS-A.fmt

Here, the SSRA-0 AACS memory load is converted (from .alv format) into a AACS-A RAM .fmt
image (corresponding to a spacecraft sequence in loading AACS-A FSW from the SSRA-0).

Example 2: fmtconvert -if CDS-A.efmt -scet 1998-l23T00:00:00.00i -of 98 123.fmt

Here, the current RAM image of CDS-A, an .efmt file with multiple data groups (i.e., load image plus
multiple updates) is evaluated at scet time of year 1998, day 123, time 00:00:001. The output is a
.fmt file with a single data group, representing the CDS-A image at the specified scet time.

4.2 fmtdiff Utility

Analysis of different FMT images often requires comparison at specified times, using masks to
compare only specified masked sub-images. The usage of fmtdiff is as follows:

where -if1 <input file name>
fmtdiff <parameters>

[-itypel { efmtlealvltdclalv}]
[-scet I <scet-time>]
similarly for -if2, -itype2, and -scet2
[-mask]

Example 3: fmtdiff -if1 CDS-A.efmt -scetl 1998-100T00:00:00.00I -if2 CDS-A.efmt -scet2
1998-165T23:59:59.999 -mask -of 98100-165-MSKdiff.txt

Here, the CDS-A .efmt image is evaluated at DOY 1998-1 00 and 1998-1 65, producing two .fmt
images, 98100.fmt and 98165.fmt. In turn, these two .fmt are compared, i.e., diff'ed, using the
98100.fmt as the mask. Without the -mask option, the complete images of 98100.fmt and 98 165.fmt
are compared.

4.3 ram2ssr-diff.script
The usage of scripts is no different than the usage of utilities. Normally, scripts contain calls to
utilities as well as scripts. Certain utility also call other utilities during compilation. To wit:

ram2ssr-diff.script ram.efmt scet l ssr .e lav scet2 ram-image.mask output-file
argv[ll argv[21 argvt31 argv[41 argvl51 argv[61

While the script contains substantial error trapping and user interface interaction, only the skeleton of
this script is described as follows:

#!/bin/csh -f
fmtconvert -if $argv[3] -of tmp.ram1 .efmt
fmtsort - i f tmp.ram1 .efmt -of tmp.ram2.efmt
ram2ram-diffscript $argv[1 j $argv[2] tmp.ram2.efmt $arg[4] $argv[5] $argv[6]

ram2ram-diff.script raml.efmt sce t l ram2.emft scet2 ram-image.mask output-file
where:

argv[ll arwl21 argvl31 arw[41 argv[51 arwi61
which is:

#!/bin/csh -f
frntconvert -if $argv[I] -scet $argv[2] -of tmp.ram 1 .efmt
fmtconvert -if tmp.ram 1 .fmt -of tmp.ram 1 .tdc
fmtmasktdc -tdc tmp.raml .tdc -msk $argv[Sj -of tmp.maskd-ram1 .tdc
fmtdiff -if1 tmp.mskd-ram1 .efmt -scet $argv[2] -if2 $arv[31 -scet2 $argv[4] -mask

-of $argv[6]

5

5. ILLUSTRATION OF END-TO-END FMT ANALYSIS

This section contains a flow of procedures (i.e., scripts) that embody the end-to-end FMT analysis. It
is divided into five subsections: (i) Data Setup; (ii) Data Update by Command; (i i i) MRO Data
Processing; (iv) Command Generation; and (v) Data Analysis.

5. I FMT Data Setup
This step is basically a one-time process, whereby the proper .fmt and .alv images are set up from the
FSW compiler load. Data bases containing parameters of interest to mission ops analysts, are
established in .amf and .adb files. A typical script to achieve this process is as follows:

#!/bin/sh -v
mkdir -/SETUP; cd -/SETUP; mkdir IstGEN; mkdir 2ndGEN
fmtconvert -if aacs-aO.ealv -of I stGEN/aacs-a.efmt
fmtcreate -if amf-records.ascii -otype eamf -of lstGEN/aacs.eamf -ver A.5.6.7 -scet 1997-

298T12:OO:O 1 .OOl
fmteu2dv -if adb-eu-records.ascii -of 1 stGEN/adb-dveu-recordsacii
cd IstGEN; mkdir 2ndGEN
fmtcreate -if adb-dveu-recordsacii -otype eadb -of 2ndGEN/aacswa.eadb -ver A.S.6.7 -scet

fmtconvert -if 2ndGENhacs-a.eadb -of 2ndGEN/parameters.efmt
fmtmerge -if 1 aacs-a.efmt -if2 2ndGEN/parameters.efmt -of 2ndGENlaacs-a.efmt

1997-298T12:00:01.001

5.2 FMT Data Update By Command
This process updates the base .fmt, .adb and other files by parsing spacecraft commands and
interpreting the actions which alter FSW code and parameters. A typcial script is as follows:

#!/bin/sh -v
mkdir 4UpdateBYcmd; cd -/UpdateBYcmd; mkdir 1 stGEN
fmtconvert -if -/SETUP/lstGEN/aacs.eamf -of lstGEN/97333.amf -scet 1997-333T00:00:00.001
fmtupdatebycommand -if1 1 stGEN/97333.amf -sub AACS -if2 aacsPARMch.sasf -start 1997-

cd IstGEN; mkdir 2ndGEN
fmtxemerge -if ../update-edited.xfmt -eamf ../aacs.eamf -scet 1997-330T00:00:00.00I -id .. -od .

330T00:00:00.001 -end 1997-340T00:00:00.001 -ver A5.6.7 -of I stGEN/update.xfmt

5.3 FMT Data Processing of MRO Telemetry Downlink
Thjs process updates the current .efmt, .eadb and other files by processing MRO data. A typical
script is as follows:

#!/bin/sh -v
mkdir -/MROupdate; cd -/MROupdate; mkdir IstGEN
fmtmro -if aacs.mro -x
fmtmro -if aacs.mro -p -sub=AACS -des=PR -of IstGEN/aacsPR.mro
cd IstGEN; mkdir 2ndGEN
fmtconvert -if aacsPR.mro -of mro.xfmt -sid AACS-A
cd 2ndGEN
fmtxemerge -if ../mro.xfmt -eamf ../aacs.eamf -scet 1997-304T13:59:59.999 -id .. -od .

5.4 FMT Command Generation
This process involves analyses of .efmt and other images, to determine the differences between actual
and desired on-board images, hence generating mernGry-write commands to implement the updates:

#!/bin/sh -v
mkdir 4CMDgen; cd -/CMDgen; cd IstGEN
fmtsort -if aacs-a.efmt -of IstGEN/sorted.efmt
fmtsort -if I stGEN/sorted.efmt -of I stGEN/sortTWICE.efmt
cd IstGEN; mkdir 2ndGEN
fmtmemupdatecmdgen -if1 sortTWICE.efmt -scetl 1997-365T235959.999 -if2

sortTWICE.efmt -scet2 1997-300T23:59:59.999 -of 2ndGEN/cmd_97300-365.ascii -target
AACS -survivor 2

6

FMTj&r Cussini Mission Ops Paper #sf005 - Spucc~0p.s 5th In t . Sytnp., Tokyo, 6//-5/97

fmtmemupdatecmdgen -if1 sortTWICE.efmt -scetl 1997-365T23:59:59.999 -if2
sortTWICE.efmt -scet2 1997-300T23:59:59.999 -of 2ndGEN/cmd-97365-300.ascii -target
AACS -survivor 1

5.5 FMT Data Analysis
A variety of analysis can be performed, including sorting, evaluation, query and diff‘ing images.
These procedures call utilities such as fmtsort, fmtconvert, fmtmask, fmtmerge, fmtquery and fmtdiff,
and other scripts. Their formulation is obvious from the exposition in Section 4 and 5.

6. SUMMARY

The Flight Software Memory Tracker (FMT) is being embraced as a new and powerful ground
analysis tool for the Cassini spacecraft mission. The arduous task of tracking multiple copies of FSW
images, over physical media and temporal span, has been made tractable via a unified and
systematized tool, the FMT.

This paper contains a synopsis of how FMT is designed, what it contains (in terms of “utilities” and
“procedures”, i.e., “scripts”), and how it achieves an end-to-end processing of commands and
telemetry readout updates.

FMT is a multi-mission tool. FMT’s software engineering is targeted for generic FSW tracking, and
FMT’s implementation is in Java. FMT can be run over multiple platforms and is readily extendible
to missions other than Cassini.

ACKNOWLEDGEMENT 4.
This work was carried out at the Jet Propulsion
Laboratory (JPL), California Institute of Technology,
under contract to the National Aeronautics and Space
Administration. H. tiffelman was with Arcata
Associates, Inc., under contract to JPL. The functional 5 .
requirements of this work were developed by R. Morillo;
engineering design / software specification by E. Kan
and H. Uffelman; software design by A. Wax; and
implementation by A. Wax, J. Tusynzski and T. White.

REFERENCES 6 .
I . Wilson, Robert. K., and M. Hill. M., “Spacecraft

Analysis, MSAS (Multimission Spacecraft Analysis
System) - A Multi-Mission Solution,” Paper
5 f O O I . Proc. SPACEOPS 1998, 5th Int. Symp. on
Space Mission Operations and Ground Data 7 .
Systems. Tokyo. Japan, Jun. 1-5. 1998; also
Document #JPL D-9173, Rev. D, (Functional
Requirements Document), Jet Propulsion
Laboratory, Ju ly I O . 1996. X .

2 . Murphy. S.C., et.al., “Customizing the JPL
Multimission Ground Data System,” &
SPACEOPS 1994. 3rd Int. Symp. on Space Mission
Opcrations and Ground Data Systems, held at GSFC,
Greenbelt. Mtl., USA, Nov. 14-18, 1994. 9 .

3 . Tapin, E. (custodian), “C asstnl . ’ ’ Functional
Requirements 3-201, U p l i n k Formats s(Command
Tables.” Jet Propulsion Laboratory Document
#CAS-3-291. Rev. E, Jan. 24, 1097.

Kan, E. P., and H. Uffelman, “CDS (Command and
Data Handling Subsystem) Package Requirements
Document - Flight Software Memory Tracker,“ Jet
Propulsion Laboratory Document #JPL D-9 173
(Section 3.2), Ju ly IO , 1997.
Salcedo, J.. “Advanced Multimission Operations
System - Sequence Subsystem (SEQ) Version-I9
SEQ-GEN User Guide,” Jet Propulsion Laboratory
Document #JPL D- 1 1 1261, also JPL MOSO
Document #W4~MSEQO716-01-00-09. Dec. I ,

1993.
Kan, E. P., et.al., “FMT (Flight Software Memory
Tracker) for Cassini Spacecraft - Software
Engineering tising JAVA,” Proc. IASTED ’97 I n t .
Conf. on Software Engineering, San Francisco.
CA., USA, NOV. 2-4, 1997.
Kan. E. P. and H. Uffelman, “Flight Software
Memory Tracker (FMT) User’s Guide.” Jet
Propulsion Laboratory Document #JPL D-9 I73
(Section 3.2). Sept. 17, 1997.
Kan. E. P., “Mission Operations Data Analysis
Tools for Mars Observer Guidance and Control,”
Proc. SPACEOPS 1994, 3rd Int. Symp. on Space
Mission Opcrations and Ground Data Systems, held
at GSFC. Greenbelt, Md., USA, Nov ,1418. 1994.
Kan., E.P.. “ L o w Bit Rate Autonomous Spacecraft -
End-to-End G&C System Design.” Proc. AIAA GNC
w, (American lnstitutc o l Acronuutics and
Astronautics, Guidance and Control Conlcrencc)
Paper #06-3025, San Diego. CA, USA. 7/23 -3l/96.

7

. FMTfor Cussitti Mission Ops Paper #5@05 - Space0p.s 5th Ittt. Symp., Tokyo, 611-5197

Figure 1 . Flight-Software-Memory-Tracker (FMT) Context Diagram (Level 0)

0 Telemetry

mro-tlm-data

Tes!_Varialionjile

sequencing
Input

Command-Files

sequence files I

.Idm, .map Files

t
Project

Sfwe Library

Figure 2. FMT Level 1 Data Flow Diagram

N

